[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Compensations and
Runtime Verification

Gordon J. Pace
Christian Colombo
University of Malta
September 2009

FLACOS 2009

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Motivation

= More widespread use of SOA, dynamic service
composition, long-lived transactions, system-of-systems
architectures lead to greater need for handling failure
as part of a system’s normal behaviour.

= Catering for failure of components is becoming more
important in various scenarios:

= Systems built of separate components may not be
able to trust the success of the constituent parts.

= Components may be discovered, invoked at runtime,
not knowing enough about them at compile time.

= invoking muitipie services (for the same computation)
and using the first result would require undoing the
other partial transactions.

= Sometimes it is simpler to describe a system in
terms of what to do, and how to undo In case of
failure.

September 2009 2

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Motivation

= The questions we are addressing are:

= How can runtime verification support
compensations in a system (without
compensations)?

= How can we use information about
compensations in a system to support or
strengthen runtime verification?

September 2009 3

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Further Motivation

= We are applying runtime verification
techniques to an industrial case study
system for financial transactions.

= |xaris Systems Ltd are provide online
payments solutions and virtual credit
card provider.

= Their systems already include an
implementation of compensable
actions and rollbacks to handle long-
lived transactions.

September 2009 4

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Monitoring of Financial Transaction Systems

= Life cycle
= Frozen or reclaimed credit cards cannot be used in financial transactions.

= The states in the life-cycle of an entity (eg. user, credit card) are correctly
traversed, i.e. in the correct order.

L] Real-time

. After six months (but not before) of user inactivity, the user should be put
in a dormant state.

= After a year (but not before) of user inactivity, the user should be removed
from the system.

= Access rights

. A udser must have the necessary right before loading money onto the credit
card.

= A user must have the necessary right before transferring money from a card
to another.

= Amounts

= The number of times a user loads money to a credit card should not exceed
the stipulated amount for a day or a month.

= The total sum of money loaded should not exceed the stipulated limit for a
day or for a month.

September 2009 5

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

An Example of Compensations

= The bogll—standard example: A customer buying books from
an on-line bookshop

= The service proceeds as follows:
= The customer commits an order
= The bookshop gets payment from the customer
= The bookshop orders a courier
= The books are identified in the warehouse
= The books are packed
= The books are posted to the customer
= But errors may occur at various points in the process:
= The bookshop realizes that one of the books is not in stock
= The credit card payment may fail

= The customer may cancel an order while still being
processed

September 2009 6

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Challenges of Compensations

Actions performed before the failure
occurs have to be “undone”:

= Undoing actions may involve doing something other than the
inverse of the forward action:

= chargeAcct == charge(€1) @ refund(95c)
= Compensations may be overridden:

= (_createAcct; chargeAcct; makeOrder) @ destroyAcct;
verifyClient

= Compensations may be nested:

= (..)/ (destroyAcct & recreateBlacklistedAcct; ...)
= Compensations may be scoped:

= payment; { advertisment }; delivery

= Parallelizing parts of the process makes the compensation
more involved

September 2009 7

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

So Many Logics, So Little Time

= There are various flavours of
compensations:

= Process calculus style (CSP, pi-calculus
based)

= BPEL (and BPEL-like)

= Petri net like

= Language-based approaches
= Deontic logics

September 2009 8

Department of Computer Science

Verification University of Malta

Research Group

[Semantics &

Runtime Verification and LARVA

GLOBAL {
VARIABLES { Clock t; intc = 0; }
EVENTS {
interact() = {*.action()}
interactitreset(); badioginWc++; t30() = {t@30*60}
AT . o,
(goodogin / N
S, sl Ly - }
(loggedin | (logged out) PROPERTY users {
P — — TN _A STATES {
[t@3060 logoufic=0; badiogin / BAD { inactive badlogins }
[\ci‘z P NORMAL { loggedin }
N\ v STARTING { loggedout }
{ inactive) { bad logins))

/
TRANSITIONS {

loggedout -> loggedin [goodlogin\\t.reset();]
loggedout -> loggedout [badlogin\\c++;]

11

September 2009 9

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Compensation Automata

= Extends automata with compensations
using hierarchical automata with three
structuring elements:

= Compensation declaration to enact a
compensation of an automaton.

= Deviation to redirect compensations.
= Scoping of compensations.

September 2009 10

[Semantlcs & Department of Computer Science

Verification
Research Group

Compensation Automata
/ pay<€1) finalise éﬂ.@)

rfnd(75c) é unpack C J
G J
Qddomer

=2

University of Malta

—

September 2009 11

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Compensations in LARVA

= Compensation automata extended to
specify properties in LARVA.

= There are different modes of
application of the compensations,
which we are investigating, and wiill

ho rhcbl |cc|nr~|
~2 11 IB

= As yet, there still is no proper real-
time compensation management.

September 2009 12

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Using Compensations I:

Comeensations as Seecifications

= Complex contracts (properties) regularly
have statements which should hold, but
with provisos if they do not:
= “A client is obliged to keep his/her account
balance positive, and will be charged a fee of
€10 if he/she does not”
= We expect the monitored system to
implement such recoveries.

= Compensation logics and automata can be
seen as a specification of what the system
should do — it is simply a more appropriate
notation to specify certain systems.

September 2009 13

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Using Compensations I1:

Comeensations for Instrumentation

= On the other hand, the compensations can
be seen as a specification of the recovery
actions to recover from a particular
problem.

= Essentially a monitor-oriented programming
style very cleanly, avoiding keeping
complex histories.

= This can be combined with the previous
approach by providing two types of
compensations:
= exceptions handled by the system and;
= exceptions to be executed by the monitor.

September 2009 14

Department of Computer Science

Verification University of Malta

Research Group

[Semantics &

Using Compensations I11:

Almost Online Runtime Verification

Online ction

monitoring

System Monitor
proceed

= |Instrumented code of the monitor M is added within the
running system S, sharing the same address space.

= Running synchronously with the system.

= As soon as a problem is identified, mitigation may occur
without the system running further.

= But, we are effectively monitoring M |] S, not S.

= The overheads and interaction with the system are not
always acceptable in an industrial setting.

September 2009 15

Department of Computer Science

Verification University of Malta

Research Group

[Semantics &

Almost Online Runtime Verification

Offline § §

monitoring

System : : Monitor

= The system produces a log to run the verification code on
at a later stage.

= Running asynchronously with the system.

= Verification much more acceptable and faithful since the
logging code is typically much more lightweight than the
monitoring code.

= But by the time a problem is identified it may already been
too late.

September 2009 16

[Semantics &

Verificati Department of Computer Science
erification University of Malta
Research Group

Almost Online Runtime Verification

Almost

online

o Monitor
monitoring

= Monitoring is identical to offline
monitoring:
= The system produces a log at runtime.

= The monitors run concurrently but on
separate address spaces.

= May not be in sync.

September 2009

17

[Semantics &

Verification Department of Computer Science
University of Malta
Research Group

Almost Online Runtime Verification

Almost
online

monitoring
Monitor

stop

| _compensate
T T

= But when a problem is identified:
= The monitor may stop the system, and

= Use compensations to undo the actions performed
by the system in the meantime.

September 2009 18

[Semantics &

Verificati Department of Computer Science
erification University of Malta
Research Group

Almost Online Runtime Verification

Almost
online

monitoring
Monitor

stop
! compensate !

* In this example we would want to
perform a compensation for:
= transfer; deposit; pay

September 2009 19

Semantics & r Sci
[Verifica(ion Department of Computer Science

University of Malta

Research Group

Almost Online Runtime Verification

= Compensate for actions:
= up to the point which the system reached,
= regressing back to a point before the error.
= Compensations may be specified by either:
= the system, or
= as part of the properties themselves.

= The major challenge is resuming the system
from the point where it was ‘rewound’ to.

September 2009 20

10

[Semantics &

Department of Computer Science

Verification University of Malta

Research Group

Compensations in Financial Transaction Systems

= \We are exploring the use of LARVA with
compensations to monitor transactions handled by the
systems built at Ixaris.

= Using compensations as specifications of expected
behaviour and to specify recovery actions can already
be done by translating into base LARVA.

= We are exploring the almost-online approach, in which
we use the compensations already built in the system.
Major challenges are:

= Resuming the system after recovery (easy on a
transaction by transaction system, but tough
otherwise).

= Making sure that rollbacks induced by the monitors do
not interfere with rollbacks induced by the system.

September 2009 21

[Semantics &

Department of Computer Science
University of Malta

Verification
Research Group

Conclusions and Future Directions

= The system is up and running at Ixaris
— monitoring for properties and
compensations but still working on
the almost-online approach.

= Compensations may induce
unbounded overhead.

= |Investigating adding real-time.

= Relationship to deontic contracts —
conflicts, analysis, etc.

September 2009 22

11

